英语新闻 英语考试 留学英语 TEM英语 CET英语 BEC英语 托福英语 雅思英语 英语作文 英语故事 英语笑话 娱乐英语 行业英语 英语学习 生活英语
工作英语 奥运英语 法律英语 英语口语 英文阅读 写作翻译 词汇语法 专四八级 四级六级 考研英语 职称英语 疯狂英语 英文简历 奥运知识 名人演说
您现在的位置: 3edu教育网 >> 英语角 >> 英语新闻 >> 科技Science >> 正文    3edu教育网,百万资源,完全免费,无需注册,天天更新!

转基因病毒可以大大提升电池的性能

转基因病毒可以大大提升电池的性能

分类:科技Science   更新:2015/4/20   来源:科技Science

转基因病毒可以大大提升电池的性能

    MIT researchers have found a way to boost lithium-air battery performance, with the help of modified viruses.
    麻省理工学院研究人员发现,转基因病毒可以大大提升电池的性能。   Lithium-air batteries have benete a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable1 materials for the batteries' electrodes and improving the number of charging-discharging cycles the batteries can withstand(抵挡,反抗).   Now, MIT researchers have found that adding genetically2 modified viruses to the production of nanowires -- wires that are about the width of a red blood cell, and which can serve as one of a battery's electrodes -- could help solve some of these problems.   The new work is described in a paper published in the journal Nature Communications, co-authored by graduate student Dahyun Oh, professors Angela Belcher and Yang Shao-Horn, and three others. The key to their work was to increase the surface area of the wire, thus increasing the area where electrochemical activity takes place during charging or discharging of the battery.   The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules3 of metals from water and bind4 them into structural5 shapes. In this case, wires of manganese oxide6 -- a "favorite material" for a lithium-air battery's cathode, Belcher says -- were actually made by the viruses. But unlike wires "grown" through conventional chemical methods, these virus-built nanowires have a rough, spiky7 surface, which dramatically increases their surface area.   Belcher, the W.M. Keck Professor of Energy and an affiliate8 of MIT's Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is "really similar to how an abalone(鲍鱼) grows its shell" -- in that case, by collecting calcium9 from seawater and depositing it into a solid, linked structure.   The increase in surface area produced by this method can provide "a big advantage," Belcher says, in lithium-air batteries' rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous10 chemicals, this process can be carried out at room temperature using a water-based process.   Also, rather than isolated11 wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.   A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze12 reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.   Altogether, these modifications13 have the potential to produce a battery that could provide two to three times greater energy density14 -- the amount of energy that can be stored for a given weight -- than today's best lithium-ion batteries, a closely related technology that is today's top contender, the researchers say.   Belcher emphasizes that this is early-stage research, and much more work is needed to produce a lithium-air battery that's viable15 for netmercial production. This work only looked at the production of one netponent16, the cathode; other essential parts, including the electrolyte -- the ion conductor that lithium ions traverse from one of the battery's electrodes to the other -- require further research to find reliable, durable materials. Also, while this material was successfully tested through 50 cycles of charging and discharging, for practical use a battery must be capable of withstanding thousands of these cycles.   While these experiments used viruses for the molecular17 assembly, Belcher says that once the best materials for such batteries are found and tested, actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially18 developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.   In addition to Oh, Belcher, and Shao-Horn, the work was carried out by MIT research scientists Jifa Qi and Yong Zhang and postdoc Yi-Chun Lu. The work was supported by the U.S. Army Research Office and the National Science F

[1] [2] [3] 下一页

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |