英语新闻 英语考试 留学英语 TEM英语 CET英语 BEC英语 托福英语 雅思英语 英语作文 英语故事 英语笑话 娱乐英语 行业英语 英语学习 生活英语
工作英语 奥运英语 法律英语 英语口语 英文阅读 写作翻译 词汇语法 专四八级 四级六级 考研英语 职称英语 疯狂英语 英文简历 奥运知识 名人演说
您现在的位置: 3edu教育网 >> 英语角 >> 英语新闻 >> 科技Science >> 正文    3edu教育网,百万资源,完全免费,无需注册,天天更新!

杀不死你的东西可能会让你活得更久

杀不死你的东西可能会让你活得更久

分类:科技Science   更新:2014/5/13   来源:网络

杀不死你的东西可能会让你活得更久

Programmed cell death, or apoptosis(细胞死亡), is a process by which damaged cells commit suicide in a variety of situations: to avoid becoming cancerous, to avoid inducing auto-immune disease, or to kill off viruses that have invaded the cell. The main molecular mechanism by which this happens is well conserved in all animals, but was first discovered in C. elegans -- a discovery that resulted in a Nobel Prize.
    杀不死你的东西可能会让你活得更久
    What is the secret to aging more slowly and living longer? Not antioxidants, apparently. Many people believe that free radicals, the sometimes-toxic molecules produced by our bodies as we process oxygen, are the culprit behind aging. Yet a number of studies in recent years have produced evidence that the opposite may be true.
    Now, researchers at McGill University have taken this finding a step further by showing how free radicals promote longevity in an experimental model organism, the roundworm C. elegans. Surprisingly, the team discovered that free radicals -- also known as oxidants(氧化剂) -- act on a molecular mechanism that, in other circumstances, tells a cell to kill itself.
    Programmed cell death, or apoptosis(细胞死亡), is a process by which damaged cells commit suicide in a variety of situations: to avoid becoming cancerous, to avoid inducing auto-immune disease, or to kill off viruses that have invaded the cell. The main molecular mechanism by which this happens is well conserved in all animals, but was first discovered in C. elegans -- a discovery that resulted in a Nobel Prize.
    The McGill researchers found that this same mechanism, when stimulated in the right way by free radicals, actually reinforces the cell's defenses and increases its lifespan. Their findings are reported in a study published online May 8 in the journal Cell.
    "People believe that free radicals are damaging and cause aging, but the so-called 'free radical theory of aging' is incorrect," says Siegfried Hekimi, a professor in McGill's Department of Biology and senior author of the study. "We have turned this theory on its head by proving that free radical production increases during aging because free radicals actually combat -- not cause -- aging. In fact, in our model organism we can elevate free radical generation and thus induce a substantially longer life."
    The findings have important implications. "Showing the actual molecular mechanisms by which free radicals can have a pro-longevity effect provides strong new evidence of their beneficial effects as signaling molecules," Hekimi says. "It also means that apoptosis signaling can be used to stimulate mechanisms that slow down aging." "Since the mechanism of apoptosis has been extensively studied in people, because of its medical importance in immunity and in cancer, a lot of pharmacological tools already exist to manipulate apoptotic signaling. But that doesn't mean it will be easy."
    Stimulating pro-longevity apoptotic signaling could be particularly important in neurodegenerative diseases, says Hekimi. In the brain the apoptotic signaling might be particularly tilted toward increasing the stress resistance of damaged cells rather than killing them, explains Hekimi. That's because it is harder to replace dead neurons than other kinds of cells, partly because of the complexity of the connections between neurons.

| 设为首页 | 加入收藏 | 联系我们 | 版权申明 | 隐私策略 | 关于我们 | 手机3edu | 返回顶部 |